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Surface fractal dimension of two-dimensional percolation 
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Abstract. We determine the surface fractal dimension D, for two-dimensional percolation 
from Monte Carlo data in finite systems. Our results agree with the prediction from 
conformal invariance, D, = 5. 

In this paper we study percolation on a two-dimensional semi-infinite lattice. In the 
usual percolation problem (Stauffer 1985), i.e. on an infinite lattice, one occupies lattice 
sites with a probability p ,  independent for each lattice site. It then turns out that for 
p > pc  (where 0 < p c  < 1 in d 3 2 )  there exists one infinite cluster of occupied nearest- 
neighbour sites. Thus, the probability P that a randomly chosen site belongs to the 
infinite cluster is strictly positive only for p > p c .  Furthermore, if p approaches p c  from 
above, P will go to zero with a power law 

If one breaks the translational invariance in one direction by considering a semi-infinite 
lattice, P will become a function of the distance z from the surface. 

For p sufficiently close to pc  one expects scaling laws to hold and, following Christou 
and Stinchcombe (1986), we can thus assume P ( p ,  z )  to have the following scaling 
behaviour: 

P(P,  z )  - ( P  - P c ) p F ( s l z )  (2)  

5 ( P )  - IP -Pel--". (3) 

where 5 is some suitably defined correlation length which near p c  will diverge as 

The scaling function F(x)  is required to have the following property: 

F ( x )  -constant for x + 0 

implying that for large z one recovers the behaviour (1). On the other hand, for sites 
near the surface one can expect that they have a smaller probability for belonging to 
the infinite cluster, and thus, as usual in surface critical behaviour (Binder 1983), we 
should have 

F ( x )  - x-v f o r x + w  
leading to 

P (  P, z = 0) - ( p  - p c P '  (4) 

It is well known that a scaling law such as ( 2 )  can be derived from an assumption 
where p'  = p + vu. 

of generalised homogeneity for the free energy. 
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834 C Vanderzande 

In percolation the role of free energy is played by the generating function for the 
cluster numbers n, (Stauffer 1979). For percolation in a semi-infinite lattice one 
considers (De ’Bell 1980) the following free energy: 

where ns,% is the average number of clusters (per site) containing s sites of which so 
are at the surface, and h and h‘ are bulk and surface ‘magnetic’ fields. 

The free energy (5) can be split into a bulk and a surface part f, whose singular 
part behaves as (for ( p  - p c ( ,  h, h ‘ +  0) 

f , ( p - p , ,  h, h ’ ) -  b - d ” f , ( b ’ l ( p - p c ) ,  b’hh, b’hh’) 

p ‘ =  V ( d  - 1 -yl,). 

(6) 

introducing the surface ‘magnetic’ exponent y l , ,  which is related to p’ by 

(7) 

It is our purpose in this paper to calculate yl, for d = 2. 

dimension (Mandelbrot 1982) of the sites at the surface and in the infinite cluster. 

P ( p ,  z = 0) behaves as (using (3) and (4)) 

We first would like to remark that yl,  has the physical interpretation of the fractal 

Indeed, for p slightly above p c ,  the density of these points, which is given by 

z = 0) - 5-fi ” P( P, 

p (  p ,  z = 0) - ( y h - ( d - l )  

which from (7) is 

(8) 

Furthermore, the density p of a fractal with fractal dimension D, embedded in a space 
of Euclidean dimension D behaves as a function of a typical distance L as 

Combining (8) and (9) immediately gives that the fractal dimension D, of the sites at 
the surface of the infinite cluster equals y; l .  (Such an argument was first given by 
Stanley (1977) to show that yh equals the bulk fractal dimension.) 

Recently, it was conjectured on the basis of conformal invariance (Cardy 1984) 
and from a conjecture for the surface magnetic exponent y l , ( q )  of the q-state Potts 
model (Vanderzande and Stella 1987) that yl,  for percolation is equal to f .  

So far, this conjecture has received little support. For example, from (7) we have 
that p’ should be equal to 2 = 0.444.. . (because v = :). However, from a Monte Carlo 
calculation, Watson (1986) found p’ = 0.398 * 0.005, whereas Christou and Stinchcombe 
(1986) found p’ = 1.197 as the best result in a simple real-space renormalisation 
calculation. 

De ’Bell and Lookman (1986) calculated the exponent y1 , which is given by 

71 = V ( l - d + y h f y k )  (10) 

from exact series expansions on the triangular lattice. They found yI  = 2.07 (*0.03) 
in good agreement with the conjecture y ,  = % (using yh =$). On the other hand, 
De ’Bell and Essam (1980) found =0.57*0.01, whereas yI , I  should be equal to 

We therefore found it appropriate to have an independent calculation of y ;  . We 
followed the same strategy as we already successfully applied to the Potts model 

V( -d  + 1 + 2 ~ ; )  =$. 
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(Vanderzande and Stella 1987) and the 2, model (Vanderzande 1987). Here we calculate 
the surface susceptibility x5 which is defined as 

At the infinite systems' percolation threshold p = p c ,  finite-size scaling (Barber 1983) 
predicts that the surface susceptibility x ~ , ~  in a finite system of size L should behave as 

s , L  ( Pc ) -  L-d+ .vh+ .vh  (12) 

which for two-dimensional percolation gives 

Furthermore, from (5) and the definition (1 1) we find that the surface susceptibility 
is given by 

Our calculations were performed on the square lattice, where p c  is known to be equal 
to 0.59275 (Stauffer 1985). We considered finite square systems of side L, with 
L = 2,4,6,  . . . ,20. We took periodic boundary conditions in one direction, thus creat- 
ing two free surfaces in the perpendicular direction. For the largest system sizes we 
generated up to 60 000 configurations, from which (14) was calculated using standard 
cluster counting methods (Stauffer 1985). Errors were estimated from fluctuations in 
subresults. 

Our results are shown in figure 1 where we plot log xS,J  p c )  against log L. The data 
for L >  6 lie almost on a perfect straight line whose slope (determined by a least squares 
fit) is given by 0.57 f 0.01. This is in very nice agreement with the prediction in (13). 

0'51 
4 6 8 10 14 18 
I. 

2 

Log 1 
Figure 1. Logarithm of surface susceptibility ,yS,' against logarithm of system size L, at the 
percolation threshold. The dots represent our  data, the straight line is a best fit through 
the data for L > 6. 
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A simultaneous calculation of the bulk susceptibility at the percolation threshold 
x L ( p c )  which is given by 

and which should behave as 

X L (  p , )  - L - d + 2 y h  (16) 

gave as result y h  = 1.86i0.01, to be compared with yh =%= 1.896. Clearly, for the 
sizes considered one cannot neglect surface effects and therefore one should suspect 
that y, cannot be determined as accurately as the combination of surface and bulk 
properties - d  + yh + yi,  . 

We did not calculate y j ,  by calculating another surface susceptibility x : . ~ (  p , )  given 
by 

behaving in finite systems as 

Although such a calculation would have the advantage of a direct determination of 
yi,  only, the quantity ~ : , ~ ( p ~ )  does not diverge, but instead converges to an analytic 
background susceptibility which would make it difficult to determine the exponent 
with great accuracy. 

In conclusion, we have calculated the surface fractal dimension, or surface magnetic 
exponent, for two-dimensional percolation and have found good evidence in favour 
of the conjecture y l =  D, = $.  

We would finally like to remark that in the case of self-avoiding walks and lattice 
animals, the role of bulk fractal dimension is played by the 'thermal' exponent y l .  
One can thus expect that for these problems the surface fractal dimensional equals 
the surface thermal exponent, which for two-dimensional systems (or for three- 
dimensional systems at the so-called ordinary transition (Binder 1983)) always equals 
-1 (Burkhardt and Cardy 1987). Of course, then the idea of fractal dimension loses 
much of its meaning. 
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